今年8月より本研究科に客員教授として滞在されておられる,
韓国全北大学校のJin Gyun Chung先生(元工学部長)に,
ご講演をしていただきます。
先生のご専門は,ディジタル信号処理で,現在は特に
高度情報化が進む自動車内部の通信セキュリティ向上に
ついてご研究されておられます。

是非,ご聴講ください。(聴講料無料)

[日 時]平成30年1月9日(火)16時10分~ 17時40分
[場 所]長崎大学工学部2号棟 22番講義室(長崎県長崎市文教町1-14 長崎大学文教キャンパス)
[演 題] A Security Protocol Based on a CAN Data Compression Algorithm for In-Vehicle Networks
(CAN Data Compression Algorithmを基にした車載ネットワークのセキュリティプロトコルに関する研究)
(英語でのご講演になります。)
[講 師] Prof. Jin Gyun Chung, Division of Electronic Engineering, Chonbuk National University, South Korea
https://www.researchgate.net/profile/Jin_Gyun_Chung
(平成29年8月~平成30年1月(予定) 長崎大学大学院工学研究科客員教授)
[講演概要]
Distributed embedded network protocols, such as the controller area network (CAN), FlexRay, MOST, and time-triggered protocol, are used in a wide variety of safety-critical applications. The CAN bus system has been successful in many application fields due to its high reliability and cost-efficiency.
The CAN system has gained popularity in embedded machine control applications, such as home appliances, industrial machines, and medical equipment, which require serial communication between micro-controllers.
Today, most cars contain dozens of electric control units (ECUs). State-of-the-art vehicular on-board architectures consist of more than 70 ECUs that are interconnected via in-vehicle networks.
Unfortunately, there is no built-in way to enforce security in CAN, and this leads to many possible attacks. For example, when data are broadcast using the CAN bus network, CAN does not ensure the confidentiality and authentication of the data frames. This provides a way to easily eavesdrop on the CAN data or to launch a replay attack by a malicious adversary. Therefore, for the last 10 years, security protocols for in-vehicle networks have been studied and reported in several articles.
As the number of encryption and authentication bits generated by the security algorithm increases, the bus load also increases. When a CAN bus is overloaded, it is not easy to transmit low-priority CAN messages due to the increased wait time.
Fortunately, the bus overload can be efficiently reduced by applying data reduction techniques to the CAN data. The development of data compression techniques is based on the observation that there is only a small difference between the successive CAN frames with the same message identifiers.
In this presentation, a security protocol for the CAN system is presented based on a CAN data compression algorithm. Due to the CAN data compression, in most cases, the encryption and authentication data can be transferred within the data field of the CAN protocol, which eliminates the change of the CAN protocol from the original definition. The proposed method can also be applied to the CAN FD protocol with appropriate modifications.
Experimental results with a Kia Sorento indicate that the average message delay with 20 ECUs is within
0.112 ms, and the bus load can be reduced up to 20.49% using the proposed method compared to conventional methods. Our results show that the proposed security protocol is suitable for use in real-time in-vehicle systems.
現在、ほとんどの自動車には数十の制御ユニット(ECU)が搭載されており,車載向けのコントローラエリア
ネットワーク(CAN)を介して相互接続されています。しかし、CANにはセキュリティを強化するための組み込みの
方法がなく、ハッキング等の可能性が懸念されています。したがって、過去10年間、車載ネットワークのセキュリ
ティプロトコルに関する研究が活発化しています。
一方で,セキュリティアルゴリズムによって生成される暗号化および認証ビットの数が増加すると、バス負荷も
増加します。
この講演では、開発したCANデータ圧縮アルゴリズムに基づいたCANシステムのセキュリティプロトコル技術につ
いて紹介します。提案手法の適用例では,従来手法と比較してバス負荷を20.49%まで削減可能であり、提案手法
がリアルタイム車載システムでの使用に適していることを示しています。